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Abstract

Intervals have a double nature: they can be considered as compact sets
of real numbers (set-intervals) or as approximate numbers. A set-interval
is presented as an ordered pair of two real numbers (interval end-points),
whereas an approximate number is an ordered pair consisting of a real “ex-
act” number and a nonnegative error bound. Thus, differently to the case
with set-intervals, where both endpoints are real numbers, when operat-
ing with approximate numbers, one should know the algebraic properties
of the arithmetic operations over error bounds, that is over nonnegative
numbers. This work is devoted to the algebraic study of the arithmetic
operations addition and multiplication by scalars for approximate num-
bers, resp. for errors bounds. Such a setting leads to so-called quasilinear
spaces. We formulate and prove several new properties of such spaces,
which are important from computational aspect. In particular, we focus
our study on the operation “distance between two nonnegative numbers”.
We show that this operation plays an important role in the study of the
concept of linear independence of interval vectors, the latter being cor-
rectly defined.

1 Introduction

Interval analysis is now an established sub-domain of numerical analysis. In its
contemporary form it starts with the work of T. Sunaga [8], [11]. Related key
words are: “interval arithmetic”, “interval computations”, “reliable computing”,
etc. The field has a journal [13] and mailing-list [14] comprising several hundred
users. Biannual conferences are organized the last one (12th in the series) taking
place in Lyon, France, in 2010, see: http://scan2010.ens-lyon.fr/. A well
organized and maintained website is [15]. A nice popular introduction in interval
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analysis (and related issues) is the article [3]. Currently an IEEE P1788 Working
Group develops a standard for interval arithmetic [2].

In this work we study some properties of the interval arithmetic operations
for addition/subtraction and multiplication by scalars, remaining in the do-
main of proper intervals. We focus on the inner interval arithmetic operations
for adition/substraction. Recall that the group analogue of such a setting has
been already well explored, leading to so-called quasivector space, see [9]. In
a quasivector space of group structure linear independence of interval vectors
is introduced in a natural way. Here we show that in a quasilinear space of
monoidal structure linear independence of interval vectors can also be defined
using inner interval operations. This has been done in this work for first time.

2 Preliminaries

By a one-dimensional interval we shall mean a compact set on the real line.
Intervals have a double nature: they can be interpreted either as sets of real
numbers (set-intervals) or as approximate numbers. Set-intervals are presented
as ordered pairs of two real numbers interpreted as end-points. The inter-
pretation of intervals as set-intervals is especially useful in the area of global
optimization, where one often needs to work with large intervals. Alternatively,
intervals can be viewed as approximate numbers, which are ordered pairs con-
sisting of a real number, interpreted as “main” value (sometimes considered as
“mean”, “probable”, “highly possible”, “true”, etc.) and a nonnegative real
number interpreted as an “error bound”. The “approximate number”-concept
excludes the consideration of large intervals; in praxis it also makes no sense to
consider approximate numbers containing zero.

2.1 Interval arithmetic in “set-interval” notation

We first introduce interval arithmetic operations for addition/subtraction (“+”,
“−”, etc.) and multiplication by scalars “∗”, as well as the inclusion relation
relation “⊆”. We shall first formulate these operations using both the “set-”
and the “approximate number”-concepts.

Denote the set of reals by R and the set of all real compact intervals by IR.
Using the set-concept notation, denote the endpoints a, a ∈ R, a ≤ a. Given
a, a ∈ R, a ≤ a, denote [a, a] = {x | a ≤ x ≤ a}. For two intervals A = [a, a],
B = [b, b] ∈ IR we have:

[a, a] + [b, b] = [a+ b, a+ b],

[a, a] − [b, b] = [a− b, a− b],

[a, a] +− [b, b] = [a+ b ∨ a+ b],

[a, a]−− [b, b] = [a− b ∨ a− b],

α ∗ [b, b] = [αb ∨ αb],

[a, a] ⊆ [b, b] = b ≤ a & a ≤ b.
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The notation [α ∨ β] means the (interval) set of all reals between α and β;
this notation is useful whenever one does not know whether α ≤ β or not.

The operations “+”, “−” will be referred as outer addition/subtraction,
whereas the operations “+−”, “−−” will be referred as inner addition/subtraction.

2.2 Interval arithmetic in “approximate-number” nota-
tion

(Narrow) intervals can be interpreted as approximate numbers; such are for
example floating point numbers. An approximate number is an ordered pair
consisting of a real number considered as exact and an error bound. In the case
of floating-point numbers the “exact” real number is a machine number and
an error bound is, e. g. (twice) the distance between the neighboring machine
numbers. Error bounds, also called computational errors or just errors, are
(real) non-negative numbers.

Denote the set of nonnegative reals by R+ = {a ∈ R | a ≥ 0}. Given
a′ ∈ R, a′′ ∈ R+, denote (a′; a′′) = {x | |x− a′| ≤ a′′}.

Given (a′; a′′), (b′; b′′) ∈ IR with a′, b′ ∈ R, a′′, b′′ ∈ R+, we have:

(a′; a′′) + (b′; b′′) = (a′ + b′; a′′ + b′′),

(a′; a′′) − (b′; b′′) = (a′ − b′; a′′ + b′′),

(a′; a′′) +− (b′; b′′) = (a′ + b′; |a′′ − b′′|),
(a′; a′′)−− (b′; b′′) = (a′ − b′; |a′′ − b′′|),

α ∗ (b′; b′′) = (αb′; |α|b′′),
(a′; a′′) ⊆ (b′; b′′) = |b′ − a′| ≤ b′′ − a′′.

We note that in the operations “+−”, “−−” the expression |a′′−b′′| appears
(“distance between two nonnegative numbers”). We next show that this is a
natural operation arising in the additive set of real numbers and shall explore its
algebraic properties. To this end recall the operation addition of real numbers

2.3 Interval arithmetic and functional ranges

To have an idea of the utilization of the interval arithmetic operations, we briefly
discuss their relation to functional ranges.

Let f, g be two continuous functions defined on the interval X ∈ I(R). The
ranges of f, g are f(X) = {f(x) | x ∈ X}, resp. g(X) = {g(x) | x ∈ X}.
Assume that these ranges are known, we want to find out the range of the sum
f+g. We can easily see that for the range of the sum f+g we have the inclusion:
(f+g)(X) ⊆ f(X)+g(X), where “+” is the (outer) interval addition. However,
we would like to find out a more “sharp” relation, possibly equality relation.

Thus in the special case when f, g are equally monotone we have: (f +
g)(X) = f(X) + g(X).
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Note that relation (f + g)(X) = f(X) + g(X) is true for arbitrary equally
monotone functions f, g. Thus this relation can be used to define the operation
(outer) addition of intervals as follows.

Definition EM. Given A,B ∈ I(R) take any two equally monotone func-
tions f, g such that f(X) = A, g(X) = B. Then (f + g)(X) depends only on
the choice of A,B. We thus define (outer) addition of A,B by means of the
relation: A+B = (f + g)(X).

Note that for “smooth” functions and “narrow” intervals X “half” of the
practical situations are such that functions f, g are equally monotone functions.
In the other “half” of the situations the functions f, g are differently monotone
functions.

Note also that in practice, monotonicity is a rather weak restriction — be-
cause ifX is small enough, we usually deal with functions f, g that are monotone
in X.

What happens now when f, g are assumed to be differently monotone func-
tions in X? In this case we have of course (f + g)(X) ⊆ f(X) + g(X) but
this inclusion could be very “rough”. For example: {x + (−x) | x ∈ X} ⊆
X + (−X) = X −X. Note that ω(X −X) = 2ω(X).

Definition DM. Given A,B ∈ I(R) take any two differently monotone
functions f, g such that the sum f+g is monotone and denote as before f(X) =
A, g(X) = B. Note that the interval range (f + g)(X) depends only on the
choice of A,B. Thus we can define the operation: A +− B = (f + g)(X) and
call this operation “inner addition” of the intervals A,B ∈ I(R).

Propositions for the computation of ranges can now be formulated, such as:

(f + g)(X) = f(X) + g(X) if f, g are equally monotone;

(f + g)(X) = f(X) +− g(X) if f, g are differently monotone.

etc, etc. The above considerations demonstrate the use of interval operations.
For more results within these lines consult [7].

3 Intervals as approximate numbers

To compute with approximate numbers one should know the arithmetic oper-
ations on non-negative numbers and the properties of these operations. Such
computations require suitable definitions and study of the arithmetic opera-
tions and order relations over the set of non-negative numbers. In the sequel we
discuss the algebraic properties of non-negative numbers starting from familiar
properties of real numbers. We restrict ourselves in the algebraic study of the
arithmetic operations addition and multiplication by scalars for non-negative
numbers. Such a setting leads to so-called quasilinear (interval) spaces. In
particular, we focus our study on the operation “+−” defined as the distance
between two nonnegative real numbers: A+− B = |A−B| in combination with
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the familiar order relation. This operation plays an important role in the com-
putation with error bounds and approximate numbers. We study the algebraic
properties of this operation. Based on this study we formulate and prove some
new algebraic properties of non-negative numbers, which are important from
computational aspect.

For simplicity we start with enlisting the algebraic properties of the familiar
system (R,+,≤) involving the set of real numbers together with the arithmetic
operation addition “+” and the order relation preceding “≤”. Parts of the
material in this section is developed in detail in [4].

3.1 Algebraic properties of (R,+,≤)

We recall briefly the algebraic properties of real numbers with respect to addi-
tion. As we know (R,+) is an additive group, that is

i) “+” is a closed (total) operation;
ii) “+” is associative: (a+ b) + c = a+ (b+ c);
iii) there is an identity (null) element 0, such that a+ 0 = a for all a;
iv) for every a there exists an additive inverse (opposite) element −a, such

that a+ (−a) = 0.

Property iv) induces operation subtraction a − b = a + (−b) and, conse-
quently, the property subtractability, in the sense that equation a + x = b has
an unique solution for all a, b ∈ R, namely x = b− a = b+ (−a).

Using algebraic terminology we can say: due to property i) (R,+) is a
magma; due to properties i)–ii) (R,+) is a semigroup; due to i)–iii) (R,+) is a
monoid; and due to i)–iv) (R,+) is a group. Every group obeys also property:

v) cancellation law: a+ x = b+ x =⇒ a = b.

An algebraic system may also satisfy:

vi) commutative law: a+ b = b+ a.

The additive system of reals (R,+) satisfies all enlisted properties i)– vi)
and thus is a commutative (abelian) group.

Order isotonicity. In system (R,+,≤) the preceding order “≤” is consistent
with addition, in the sense that for a, b, c ∈ R we have a ≤ b =⇒ a+ c ≤ b+ c.
As a consequence we have for a, b, c, d ∈ R: a ≤ b, c ≤ d =⇒ a+ c ≤ b+ d.

Inverse isotonicity of addition. If a, b, c ∈ R, then a+ c ≤ b+ c =⇒ a ≤ b, in
particular: a+ c = b+ c =⇒ a = b (cancellation law).

3.2 Real numbers in signed-magnitude form

Denote by R+ = {a ∈ R | a ≥ 0} the set of non-negative real numbers and let
Λ = {+,−}. A real number a ∈ R is usually presented in the form ±A, that is

5



as an ordered pair of the form (A;α), with A = |a| ∈ R+ and α = σ(a) ∈ Λ,
where

σ(a) =

{
+ if a ≥ 0;
− if a < 0.

We have

a = (A;α) ∈ {(X; ξ) | X ∈ R+, ξ ∈ Λ} = R+ ⊗ Λ.

When computing with real numbers we usually use the above presentation
a = (A;α) which will be further referred as signed-magnitude form, briefly sm-
form. Practically this means that we perform some operations separately on the
nonnegative component (magnitude) A ∈ R+ and on the sign α. Thus we have
to know the algebraic properties of nonnegative real numbers, in particular
those of the additive system (R+,+). In computational sciences nonnegative
real numbers are often related to computational errors (error bounds); thus
instead of “nonnegative real numbers” we shall sometimes speak of “errors”,
“error numbers” or briefly “e-numbers”.

An important difference between R and R+ with respect to addition is that
R is an additive group whereas R+ is a semigroup. There are no inverse elements
in (R+,+); consequently no operation subtraction and generally no solution to
an equation of the form a + x = b. To underline this difference in the sequel
we shall denote the elements of R by lower-case letters a, b, c, ..., whereas the
elements of R+ by upper-case letters, A,B,C, ....

The set of pairs R+ ⊗ Λ admits both elements (0;+) and (0;−), which
both correspond to the element 0 ∈ R. Assuming (0;+) = (0;−), we obtain a
bijection between R and R+ ⊗Λ. This allows us to identify a real number with
its sm-form a = (A;α).

3.3 Addition of reals in signed-magnitude form

Let us formulate addition of real numbers using the sm-form a = (A;α) minding
the isomorphism (R,+,≤) ∼= (R+ ⊗ Λ,+,≤). Since addition of real numbers
with the same sign and with a different sign are handled differently, to add
(A;α), (B;β) ∈ R+ ⊗ Λ we consider separately the cases α = β and α ̸= β.
In the case α = β we have (A;α) + (B;α) = (A + B;α). Here “A + B” is the
operation addition in R+ which is the restriction of addition in R. For simplicity
we use same notation for addition and order both in R and R+.

To add (A;α), (B;β) ∈ R+ ⊗ Λ in the case α ̸= β we need the operation
|A− B| in R+. Since there is no subtraction in R+ we shall denote A+− B =
|A−B| and define operation “+−” correctly as follows:

Definition 1. C-addition of A,B ∈ R+ is defined by

A+− B =

{
Y |B+Y=A if B ≤ A;
X|A+X=B if A ≤ B.

(1)
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Note that if both solutions X,Y exist in (1) (which only happens when
A = B), then they coincide and X = Y = 0. If A ̸= B then exactly one of the
equations A+X = B, B + Y = A is solvable. Operation (1) is well defined in
R+; we call it “c-addition” (“c” for “conditional”).

Define a mapping µ : R+ ⊗ Λ
2 −→ Λ as follows:

µ((A;α), (B;β)) =

{
α if B ≤ A,
β if B > A.

In the case α ̸= β we have (A;α)+(B;β) = (A+−B; µ(a, b)). Summarizing,
we have

a+ b = (A;α) + (B;β) =

{
(A+B;α) if α = β;
(A+− B; µ(a, b)) if α ̸= β,

which can be compactly written as

(A;α) + (B;β) = (A+αβ B; µ(a, b)). (2)

In (2) we assume that for α, β ∈ Λ a binary boolean operation “·” is defined
by α · β = αβ = {+, α = β; −, α ̸= β}. In addition we assume ++ = +.

Formula (2) shows that addition of two real numbers in sm-form form induces
the operation c-addition in the set of nonnegative reals. C-addition is defined as
solution of an algebraic equations of the formA+X = B and therefore c-addition
appears naturally in R+ in the same manner as subtraction appears in R. This
fact should be taken into account when studying the algebraic properties of R+

w. r. t. addition.

Let us mention that c-addition plays an important role in real analysis. In
particular, this operation appears whenever the triangle inequality |a + b| ≤
|a|+ |b| is used. Indeed, in the nontrivial case when a, b are of different signs the
triangle inequality obtains the form ||a|−|b|| ≤ |a|+|b|, that is |a|+−|b| ≤ |a|+|b|.
In the case of e-numbers the latter reads as A+− B ≤ A+B.

In the sequel we focus our attention on the operation c-addition (1). The
operation c-addition “+−” coincides with the so-called inner (or non-standard)
addition (or inner subtraction) of symmetric intervals, see e. g. [1], [3].

In the next section we review some of the properties of nonnegative real num-
bers relative to addition and multiplication by scalars focusing on the operation
c-addition. A detailed presentation of these properties is given in [4].

4 Properties of e-numbers relative to addition
and order

4.1 E-numbers: addition and order

We first review the algebraic properties of the system of e-numbers (R+,+,≤)
in comparison with the properties of (R,+,≤) as reviewed in subsection 1.1.
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Properties i)–iii) are satisfied in R+. Property iv) fails as there is no additive
inverse (opposite) in (R+,+), so equation A+X = 0 has no solution when A ̸= 0.
Subtractability does not hold as well, as A+X = B does not possess a solution
in general. The cancellation property v) A + X = B + X =⇒ A = B and
commutativity vi) A+B = B +A hold true.

Order isotonicity also takes place in R+. Namely, for A,B,C,D ∈ R+ we
have A ≤ B ⇐⇒ A+ C ≤ B + C, and A ≤ B, C ≤ D =⇒ A+ C ≤ B +D.

Summarizing, we can say that (R+,+,≤) is an ordered cancellative commu-
tative monoid. The monoid (R+,+,≤) possesses the following two properties:

P1. For A,B ∈ R+, A ̸= B, exactly one of the equations A + X = B,
B + Y = A is solvable.

P2. For A,B ∈ R+ A+B = 0 implies A = B = 0.

Properties P1 and P2 permit us to correctly define operation c-addition by
means of (1). We next consider some of the algebraic properties of c-addition,
that is of the system (R+,+−,≤).

4.2 The system (R+,+−,≤)

The following properties of c-addition “+−” follow from Definition (1):
i) “+−” is a closed (total) operation;
ii) “+−” is “c-associative”: (A+−B)+−C = A+− (B+−C), if B ≥ A and

B ≥ C;
iii) A+− 0 = A for all A ∈ R+;
iv) there is an additive inverse; namely for all A ∈ R+ the element A is

opposite to A itself, that is A+− A = 0;
v) “c-cancellation law”: A+− X = B +− X =⇒ A = B or X +X = A+B;
vi) “commutative law”: A+− B = B +− A, for all A,B ∈ R+.

Remark. Property v) says that cancellation A+−X = B+−X =⇒ A = B
holds true under the condition X +X ̸= A+B. The case X +X = A+B (or
X = 0.5(A+ B) if multiplication by scalars is available) is clearly exceptional,
which gives us the right to call this property a “conditional cancellation” (briefly:
c-cancellation).

The next property links c-addition and the order relation.

Conditional inclusion isotonicity w. r. t. c-addition. Let A,B,C,D ∈ R+ be
such that A ≥ B,C ≤ D. We have: if A ≤ C, then A+−C ≤ B+−D, if B ≥
D, then A+− C ≥ B +− D.

In the special case D = C we obtain the following corollary. Let A,B,C ∈
R+ be such that A ≥ B. We have: if A ≤ C, then A+−C ≤ B+−C, if B ≥
C, then A+− C ≥ B +− C.
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4.3 The extended additive monoid (R+,+,+−,≤)

As mentioned, subtractability does not hold neither in (R+,+), nor in (R+,+−).
However, the operation c-addition “+−” allows solving equations of the form
A+X = B in certain cases. Namely, using “+−” we can solve equation A+X =
B when A ≤ B and we can solve equation B + X = A when A ≥ B. Thus
c-addition plays a role in (R+,+) analogous to the role of subtraction in the
group (R,+).

We have shown that the algebraic system (R+,+,≤) possesses null and c-
addition; thus the system can be fully denoted as (R+,+,+−,≤) or as (R+,+, 0,+−,≤
). To emphasize that system (R+,+,≤) includes c-addition we shall call it ex-
tended additive e-numbers system.

Note that the solution of A + X = B (when existing) can be expressed
in terms of c-addition, and the solution of A +− X = B can be expressed in
terms of usual addition. Thus, solutions of both A+X = B and A+− X = B
become possible under certain conditions. This property is called “conditional
subtractability”, briefly “c-subtractability”. We formulate it as follows:

C-subtractability. i) For A,B ∈ R+, such that A ≤ B, the unique solution
of A + X = B is X = B +− A. ii) Equation A +− X = B has a solution
X = A + B for A,B ∈ R+. If A,B ∈ R+ are such that A ≥ B > 0, then
equation A+− X = B has one more solution X = A+− B.

We shall next focus our attention on the algebraic properties of e-numbers
with respect to both addition and multiplication by scalars.

5 The quasilinear e-numbers space

5.1 Addition and c-addition of e-vectors

The above considerations can be generalized component-wise for n-vectors, that
is elements of the systems (Rn,+,≤), resp. (R+n

,+,≤), noticing that then the
order relation “≤” is not total (linear) but partial. Here Rn is the set of real
vectors a = (a1, a2, ..., an), and R+n

is the set of n-tuples A = (A1, A2, ..., An),
Ai ≥ 0.

Component-wise generalizations of previous definitions such as a = (A;α) ∈
Rn with A = (A1, A2, ..., An) ∈ R+n

, α ∈ Λn, etc. are obvious. We define
addition and c-addition in R+n

as follows.

Definition 2. For A = (A1, A2, ..., An), B = (B1, B2, ..., Bn) ∈ R+n
, we

define A+B and A+− B by means of:

A+B = (A1, A2, ..., An) + (B1, B2, ..., Bn) = (A1 +B1, ..., An +Bn),

A+− B = (A1, A2, ..., An) +
− (B1, B2, ..., Bn) = (A1 +

− B1, ..., An +− Bn).
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Remark. Note that for A,B ∈ R+n
, n ≥ 2 the expression

A+− B =

{
Y |B+Y=A if B ≤ A;
X|A+X=B if A ≤ B

does not describe A +− B in the case when neither A ≤ B nor B ≤ A hold in
R+n

.
Let a = (a1, a2, ..., an), b = (b1, b2, ..., bn) ∈ Rn be two real vectors presented

in sm-form, that is ai = (Ai;αi), bi = (Bi;βi), i = 1, . . . , n. From (2) we have:

ai + bi = (Ai;αi) + (Bi;βi) = (Ai +
αiβi Bi; µ(ai, bi)), (3)

wherein

µ(ai, bi) = µ((Ai;αi), (Bi;βi)) =

{
αi if Bi ≤ Ai,
βi if Bi > Ai.

Hence, to be able to perform addition of real numbers in sm-form we need
the following operation between two vectors of nonnegative components1 A =
(A1, A2, ..., An), B = (B1, B2, ..., Bn) ∈ R+n

:

A+λ B = (A1, A2, ..., An) +
λ (B1, B2, ..., Bn)

= (A1 +
λ1 B1, A2 +

λ2 B2, ..., An +λn Bn), (4)

where λ = (λ1, λ2, ..., λn) ∈ Λn is a boolean vector (n-tuple) of signs ±.

Definition (4) generalizes the definitions of A + B and A +− B given in
Definition 2.

Using the general definition (4) of A+λB we can write down the sum of two
real vectors in sm-form briefly as follows:

a+ b = (A;α) + (B;β) = (A+αβ B; µ(a, b)), (5)

wherein A,B ∈ R+n
, α, β, µ ∈ Λn. By αβ we mean the sign vector

αβ = (α1, α2, ..., αn)(β1, β2, ..., βn) = (α1β1, α2β2, ..., αnβn).

5.2 Multiplication by scalars

Introducing in Rn multiplication by scalars from the real ordered field R =
(R,+, ·,≤), we arrive to the familiar vector space (Rn,+,R, ·,≤).

We now focus our attention to multiplication by scalars. Multiplication of a
real vector a = (A;α) ∈ Rn in sm-form by a scalar c ∈ R is given by

c · (A;α) = (|c| ·A;σ(c)α). (6)

1We should be careful with using the term vector for an n-tuple of e-numbers as such
n-tupples are not elements of a vector space
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In (6) σ(c) is the sign of the scalar c, resp. σ(c)α is equal to either α or −α
depending on the sign of c. Relation (6) shows that multiplication of a real
vector by scalars induces a new “quasivector” multiplication by scalars “∗” in
the “e-numbers space” (R+n

,+,R, ∗,≤) to be defined as follows

Definition 3. Quasivector multiplication by scalars “∗” is defined as

c ∗A = |c| ·A, c ∈ R, A ∈ R+n
. (7)

Componentwise, (7) reads:

c ∗A = |c| ·A = |c| · (A1, A2, ..., An)

= (|c|A1, |c|A2, ..., |c|An).

Using quasivector multiplication by scalars “∗” relation (6) becomes

c · (A;α) = (c ∗A;σ(c)α), c ∈ R, A ∈ R+n
. (8)

The quasivector multiplication by scalars “∗” possesses the following prop-
erties.

Proposition 1. For A,B ∈ R+n
, all s, t ∈ R and λ ∈ Λn:

s ∗ (t ∗A) = (st) ∗A, (9)

1 ∗A = A, (10)

s ∗ (A+λ B) = s ∗A+λ s ∗B, (11)

(s+ t) ∗A = s ∗A+σ(s)σ(t) t ∗A, (12)

A ≤ B =⇒ γ ∗A ≤ γ ∗B, (13)

(−1) ∗A = A, (14)

Proof. Properties (9), (10), (13) and (14) follow trivially from Definition
(7). To prove relations (11–12) we start from analogous relations for real vectors
a, b ∈ Rn written in sm-form: a = (A;α), b = (B;β), namely the familiar
distributive relations s(a+ b) = sa+ sb and (s+ t)a = sa+ ta, s, t ∈ R.

We first prove (11). To this end we write consecutively:

s(a+ b) = sa+ sb;

s((A;α) + (B;β)) = s(A;α) + s(B;β);

s(A+αβ B;µ(a, b)) = (s ∗A; σ(s)α) + (s ∗B; σ(s)β);

(s ∗ (A+αβ B); σ(s)µ(a, b)) = (s ∗A+αβ s ∗B; µ′);

s ∗ (A+αβ B) = s ∗A+αβ s ∗B,

obtaining finally (11): s ∗ (A+λ B = s ∗A+λ s ∗B.

To prove (12) we write consecutively:

(s+ t)(A;α) = s(A;α) + t(A;α);

((s+ t) ∗A; σ(s+ t)α) = (s ∗A;σ(s)α) + (t ∗A;σ(t)α)

= (s ∗A+σ(s)σ(t) t ∗A; µ(sa, ta)),
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giving the needed (12): (s+ t) ∗A = s ∗A+σ(s)σ(t) t ∗A. �

Remark. The first five properties (9–13) are characteristic for a general
quasilinear space such as the space of intervals and the space of convex bodies.
The last one is characteristic for symmetric quasilinear spaces such as the e-
numbers(equivalently: symmetric intervals) and symmetric convex bodies. Note
also that relation (12) reads:

(s+ t) ∗A =

{
s ∗A+ t ∗A if st ≥ 0;
s ∗A+− t ∗A if st < 0,

showing that the familiar second distributive law holds under the restriction
st ≥ 0. Relation (12) is called “quasidistributive law”. Sometimes the quasidis-
tributive law is postulated in the form s∗A+ t∗A if st ≥ 0; then the remaining
part s ∗A+− t ∗A if st < 0, is derived as a logical consequence.

5.3 Linear combinations and linear dependency

In [1] an attempt is made to define linear independence of interval vectors in
the case of proper intervals (the improper-generalized case has been resolved in
[9] ). Here we show some weak points of the definition given in [1] and present
a methodology for obtaining correct definitions.

Recall that k real vectors c1, c2, ..., ck ∈ Rn are linearly dependent if there
exist k real numbers α1, α2, ..., αk ∈ R, not all equal to zero, such that

k∑
i=1

αici = α1c1 + α2c2 + ...+ αkck = 0.

W.l.g. we shall assume that α1 ≥ 0.

Our next aim is to suitably modify this definition for e-vectors. To this end
let us represent in sm-form the linear combination of k real vectors that appears
in the above definition, namely:

c =
k∑

i=1

αici = α1c1 + α2c2 + ...+ αkck, (15)

wherein ci = (ci
(1), ci

(2), ..., ci
(n)) ∈ Rn, αi ∈ R, i = 1, ..., k. We substitute each

component of ci by its sm-form: ci = (Ci; γi), resp. ci
(j) = (Ci

(j); γi
(j)), j =

1, ..., n, i = 1, ..., k. As we are interested in the linear combination of nonnegative
vectors, we assume that γi

(j) = +, j = 1, ..., n, i = 1, ..., k, so that ci
(j) =

(Ci
(j); +), j = 1, ..., n, i = 1, ..., k. In vector notation the latter reads: ci =

(Ci; +), i = 1, ..., k.

For simplicity we start with k = 2, that is with a linear combination involving
two real vectors ci ∈ Rn, i = 1, 2. Using the formulae for addition of two vectors
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in sm-form (3), (4) and for multiplication by scalars (6) we obtain in vector
notation (5):

c = α1c1 + α2c2 = α1(C1; +) + α2(C2; +)

= (α1 ∗ C1; σ(α1)) + (α2 ∗ C2; σ(α2)) (16)

= (α1 ∗ C1 +
λ2 α2 ∗ C2; µ2),

where λ2 = σ(α1)σ(α2) ∈ Λ, µ2 = µ(α1c1, α2c2) ∈ Λn.

The above equality is written component-wise as follows:

α1c
(j)
1 + α2c

(j)
2 = (α1 ∗ C1

(j); σ(α1)) + (α2 ∗ C2
(j); σ(α2))

= (α1 ∗ C1
(j) +σ(α1)σ(α2) α2 ∗ C2

(j); µ2
(j)), j = 1, ..., n,(17)

where µ2
(j) is given by

µ2
(j) =

{
σ(α1) if α1 ∗ C1

(j) ≥ α2 ∗ C2
(j);

σ(α2) otherwise.

With respect to the sign of the linear combination c = (C;µ2) some of its
component may be negative as we have assumed σ(α1) = +, but α2 may be
negative and σ(α2) = −. However, w. l. g. we shall consider only linear
combinations which are nonnegative, c = α1c1 + α2c2 ≥ 0, so that c = (C; +)
and therefore µ2 = + is a constant sign vector.

We define “linear dependence” for two vectors C1, C2 ∈ R+n
as follows.

Definition. Two vectors C1, C2 ∈ R+n
are “linearly dependent” if there

exists a nonzero pair (α1, α2) ̸= 0, α1, α2 ∈ R, α1 ≥ 0, such that

α1 ∗ C1 +
σ(α2) α2 ∗ C2 = 0.

We next proceed similarly with a linear combination of three real e-vectors
c1, c2, c3 ∈ Rn. Assuming again that all ci are nonnegative and σ(α1) = +,
σ(µ2) = +, we have:

c = α1c1 + α2c2 + α3c3 = (α1 ∗ C1; σ(α1)) + (α2 ∗ C2; σ(α2)) + (α3 ∗ C3; σ(α3))

= (α1 ∗ C1 +
σ(α1)σ(α2) α2 ∗ C2;µ2) + (α3 ∗ C3; σ(α3))

= ((α1 ∗ C1 +
σ(α2) α2 ∗ C2) +

σ(α3) α3 ∗ C3; µ3),

wherein the sign vector µ3 has the following components:

µ3
(j) =

{
µ2

(j) if (α1 ∗ C1 +
σ(α2) α2 ∗ C2)

(j) ≥ α3 ∗ C3
(j);

σ(α3) otherwise.

The sign µ3 of c may not be positive in general. However, as in the case k = 2,
we again assume w. l. g. that c is positive and thus µ3 = 0, that is c = (C; +).
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The above calculations suggest that we can define “linear dependence” for
three vectors C1, C2, C3 ∈ R+n

as follows:

Definition A. The e-vectors C1, C2, C3 ∈ R+n
are “linearly dependent” if

there exists a nonzero triple (α1, α2, α3) ̸= 0, α1, α2, α3 ∈ R, α1 ≥ 0, such that

(α1 ∗ C1 +
σ(α2) α2 ∗ C2) +

σ(α3) α3 ∗ C3 = 0.

Since the coefficients α2, α3 are arbitrary reals, their signs are also arbitrary,
so that the above Definition A is equivalent to the following one:

Definition B. The e-vectors C1, C2, C3 ∈ R+n
are “linearly dependent” if

there exists a nonzero triple (α1, α2, α3) ̸= 0, α1, α2, α3 ∈ R, and signs λi ∈ Λ,
i = 1, 2, such that

(α1 ∗ C1 +
λ1 α2 ∗ C2) +

λ2 α3 ∗ C3 = 0. (18)

Definition B is generalized for arbitrary number k of e-vectors as follows:

Definition C. The e-vectors C1, C2, ..., Ck ∈ R+n
are “linearly dependent”

if there exists a nonzero vector (α1, α2, ..., αk) ̸= 0, α1, α2, ..., αk ∈ R, and signs
λi ∈ Λ, i = 1, 2, ..., k − 1, such that

α1 ∗ C1 +
λ1 α2 ∗ C2 +

λ2 ...+λk−1 αk ∗ Ck = 0, (19)

with order of executions of the operations “+λi” in (19) from left to right.

Definition C can be generalized for interval vectors. Indeed, we can think
of the e-vectors C1, C2, ..., Ck ∈ R+n

as of symmetric interval vectors (having
midpoints zero). Now let us think of Ck as of intervals with arbitrary midpoints,
that is C1, C2, ..., Ck ∈ IRn, where Ck = (Ck

′;C ′′
k ) with C1

′, C2
′, ..., Ck

′ ∈ Rn,
C ′′

1 , C
′′
2 , ..., C

′′
k ∈ R+n

. Then we have:

Definition D. The intrval vectors C1, C2, ..., Ck ∈ IRn are “linearly depen-
dent” if there exists a nonzero vector (α1, α2, ..., αk) ̸= 0, α1, α2, ..., αk ∈ R, and
signs λi ∈ Λ, i = 1, 2, ..., k − 1, such that

α1 ∗ C1 +
λ1 α2 ∗ C2 +

λ2 ...+λk−1 αk ∗ Ck = 0, (20)

with order of executions of the operations “+λi” in (20) from left to right.

Note that the condition (20) reduces to two separate conditions, one for the
midpoints (which is the well-known condition for real vectors) and one for the
radii, which is condition (19) for e-numbers.

6 Conclusions

In the present work we show that:
i) addition of real numbers naturally induces the operation c-addition of

non-negative numbers (distance, modulus of the difference);
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ii) the operation c-addition of non-negative numbers enriches the additive
monoidal system of non-negative numbers up to a structure close to a group
where many typically group operations can be performed under somewhat so-
phisticated conditions;

iii) the operation c-addition of non-negative numbers is fundamental in real
analysis, in interval analysis, and resp. in error analysis;

iv) error arithmetic involves naturally an operation “multiplication by scalars”
which leads to a special algebraic structure “quasilinear space”, close but yet
different from linear spaces.

v) using the c-associative property one naturally arrives to the concept of
linear independency of e-vectors, resp. interval vectors.

Our approach in this work is based on the “approximate-number”-concept.
An attempt to define linear independence of interval vectors based on the “set-
interval”-concept has been made in [1]. Our approach based on the ‘approximate
number”-concept proves to be more natural and methodologically simpler; it
leads to simpler definitions and expressions. To study comparatively the two
approaches is a future task.
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